Period of oscillation

Period of oscillation Edit





The period of a pendulum gets longer as the amplitude θ0 (width of swing) increases.
Main article: Pendulum (mathematics)
The period of swing of a simple gravity pendulum depends on its length, the local strength of gravity, and to a small extent on the maximum angle that the pendulum swings away from vertical, θ0, called the amplitude.[8] It is independent of the mass of the bob. If the amplitude is limited to small swings,[Note 1] the period T of a simple pendulum, the time taken for a complete cycle, is:[9]

{\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}\qquad \qquad \qquad \theta _{0}\ll 1~\mathrm {radian} \qquad (1)\,}
where {\displaystyle L} is the length of the pendulum and {\displaystyle g} is the local acceleration of gravity.

For small swings the period of swing is approximately the same for different size swings: that is, the period is independent of amplitude. This property, called isochronism, is the reason pendulums are so useful for timekeeping.[10] Successive swings of the pendulum, even if changing in amplitude, take the same amount of time.

For larger amplitudes, the period increases gradually with amplitude so it is longer than given by equation (1). For example, at an amplitude of θ0 = 23° it is 1% larger than given by (1). The period increases asymptotically (to infinity) as θ0 approaches 180°, because the value θ0 = 180° is an unstable equilibrium point for the pendulum. The true period of an ideal simple gravity pendulum can be written in several different forms (see Pendulum (mathematics) ), one example being the infinite series:[11][1

Comments

Popular posts from this blog

inthinai